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Abstract. In this paper we deal with the on-line maximum independent set
and we propose a probabilistic O(log n)-competitive algorithm for chordal and
interval graphs, proving that the same ratio is a lower bound of the problem.
The relation of the on-line maximum independent set with the on-line admis-
sion control, allows us to obtain as particular case, an O(log n)-competitive
algorithm for the on-line admission control in trees and lines. In addition
to that, we propose a competitive algorithm for the on-line call admission of
subtrees in trees.

1 Introduction

The Maximum Independent Set problem (MIS) is one of the most fundamental
problems in graph theory. Given a graph G = (V,E) with vertex set V and
edge set E, the goal is to compute a subset of the vertices V ′, such that no
two vertices in V ′ are joined by an edge and such that the cardinality of V ′

is maximized. In this paper we deal with an on-line version of MIS, where
the graph G is not known in advance, but is revealed in an on-line manner by
a malicious adversary to the on-line algorithm. The on-line algorithm has to
take its decisions during this revealing procedure.
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There are many on-line graph models in the bibliography. In [9] G is not
given in advance to the on-line algorithm. There is a set of rules R dealing with
information about the value of some parameters of the final graph G (e.g. the
maximum degree of G) and the manner in which G is revealed to the on-line
algorithm (e.g. vertex by vertex). The adversary may terminate the revealing
procedure at any time. In [23] the same model is applied, but for the on-line
graph coloring problem. In the same work there are some variations of the
model, which do not affect essentially the problem. In [21] an on-line model
called Known-Graph On-line Model is defined. According to this model, a
graph isomorphic to G is induced, but the identification of the vertices is not
known. Finally in [22] two more on-line models are proposed (multi-solutions
model and inheritance model). According to these, the algorithm can preserve
a collection of independent sets. In each step, the current vertex can be added
to up to a number of different sets.

Another interesting problem that arises in a number of applications in
communication networks, is the on-line admission control problem. In this
work, we focus on particular topologies, namely trees and lines. Given a tree
(or a line) T , call requests (given by the endpoints of the path) to be satisfied
are presented in an on-line manner to the on-line algorithm. The algorithm
may accept or reject a request and the goal is to maximize the number of the
accepted requests. In [4], [8] a O(log n)-competitive randomized algorithm is
presented for on-line admission control in trees and lines, where n is the order
of T . In [5] a O(log d)-competitive randomized algorithm is suggested, where
d is the diameter of T .

Here, we propose a randomized O(log n)-competitive algorithm for the on-
line MIS in chordal graphs and we prove that the same ratio is a lower bound
of the problem. We also relate the on-line admission control in trees to the on-
line MIS in chordal graphs and achieve an O(log n) competitive ratio, where
n is the order of the tree. In section 2 we present the on-line model that we
consider for MIS. In section 3 we refer some preliminary notions from graph
theory concerning chordal and interval graphs. Then, in section 4 we present
the randomized algorithm for the on-line MIS in chordal graphs. Last, in
section 5 we adapt the algorithm to the on-line admission control in trees.

2 The Model

We consider the following on-line model (see also [6]). The graph that is
presented by the adversary to the on-line algorithm, is an induced subgraph
of a graph that is known in advance to the on-line algorithm. The interesting



part of this model is that it is parallel with the on-line admission control
model, where the network is given in advance to the on-line algorithm.

More formally [6]:

Definition 1. The graph G = (V,E) is known to the on-line algorithm. The
vertices v ∈ V are presented one by one. The adversary may choose to ter-
minate the sequence at any time. The on-line algorithm has to decide if he
accepts v or rejects it. The benefit of the on-line algorithm is the cardinality
of the accepted vertex set.

As a performance measure for our algorithm, we will use competitive analy-
sis [30]. The competitive ratio of an on-line MIS algorithm is the maximum
over all sequences of vertices of the ratio of the optimal algorithm for a se-
quence of vertices to the performance of the on-line algorithm on the same
sequence. Specifically, let alg(σ) be the cardinality of the accepted vertex set
by the on-line algorithm, for a sequence of vertices σ and let opt(σ) be the
cardinality of the accepted vertex set by an optimal offline algorithm for σ.
The competitive ratio of alg is the maximum over all σ of opt(σ)/alg(σ).
For the case of randomized on-line algorithms, let E[alg(σ)] be the expected
cardinality of the accepted vertex set by the alg on a sequence σ. The com-
petitive ratio of alg is the maximum over all σ of opt(σ)/E[alg(σ)]. This
competitive ratio is called oblivious since the sequence σ is produced by the
adversary independently of the random choices made by alg. In this paper
we consider an oblivious adversary.

3 Chordal Graphs

In this section we present some preliminary definitions and results that we will
use later.
A chord is an edge that joins two non consecutive vertices of a cycle.

Definition 2. A graph is chordal if each one of its cycles with length l > 3
has a chord.

Every induced subgraph of a chordal graph is also a chordal graph.
For the rest of the paper we use G to denote a simple undirected graph,

V (G) and E(G) to denote respectively the vertex set and the edge set of G,
the cardinality of which is n = |V (G)| and m = |E(G)|. A clique is a vertex
set that induces a complete subgraph of G. A clique is maximal, if it is not a
subclique of some other clique of G.



Definition 3. Let F be a family of nonempty sets. The intersection graph
of F is a graph the vertices of which correspond to the sets of F , while two
vertices are adjacent if and only if the corresponding subsets intersect.

An interesting subfamily of chordal graphs are the interval graphs.

Definition 4. An interval graph is an intersection graph of a family of inter-
vals of the real line.

Theorem 1. [19] Let G be an undirected graph and let K be the set of its
maximal cliques and Kv the set of all maximal cliques that contain a vertex v
of G. The following statements are equivalent:

1. G is a chordal graph.

2. G is the intersection graph of a family of subtrees of a tree.

3. There is a tree T = (K, E) the vertex set of which is the set of maximal
cliques of G, such that each induced subgraph T [Kv] is connected.

A tree that satisfies the third property of theorem 1 is called clique tree of
G.

Definition 5. The clique graph K(G) of a chordal graph G is the intersection
graph of maximal cliques of G.

One may consider weights we on the edges e ∈ E(K(G)), such that wu,v =
|u ∩ v|, where u, v ∈ V (K(G)) are the ends of an edge e of K(G). We denote
the weighted clique graph of G by Kw(G)

Theorem 2. [7] The clique tree of a chordal graph G is a maximum weight
spanning tree of the weighted clique graph Kw(G).

In [19] it is proved the Clique Intersection Property which is the following:

Theorem 3. [19] For any pair of cliques K,K ′ ∈ K(G), the set K ∩ K ′ is
contained in every clique of the path (in the clique tree) with endpoints K and
K ′ if and only if G is chordal.

The clique tree of an interval graph has the following interesting property

Theorem 4. [20] G is an interval graph if and only if G has a clique tree that
is a simple path.



4 The Algorithm

In the sequel, we focus on the on-line maximum independent set in chordal
graphs. We make use of the on-line model mentioned in section 2.

The initial graph G presented to the on-line algorithm is chordal, as it is
the final graph C, which is an induced subgraph of G. In the following we will
use the term ”vertex” when referring to a vertex of the chordal graph G and
the term ”node” when referring to a vertex of the clique tree T (G) induced by
G. This distinction is meaningful as a node u ∈ T (G) denotes a clique of G.

The algorithm can be separated into two phases. The first is the vertex
partitioning phase and the second is the selection phase.

Vertex Partitioning The aim of this phase is to classify the vertex set V (G)
into O(log n) disjoint classes, where n = |V (G)|. At the first step of Vertex-
Partitioning, we construct a clique tree of G. This process takes linear time,
given a perfect elimination order of G [31]. A perfect elimination ordering of
G can be found in linear time [28], [32]. Then, VertexPartitioning proce-
dure uses NodePartitioning procedure in order to realize the classification.
Notice that a node u (line 4 of NodePartitioning procedure) always exists,
because trees have 1/2-separators of length equal to 1 [33]. The removal of u

from T , induces a forest, each subtree of which has at most |V (T (G))|
2 nodes.

At the end of this phase every vertex v ∈ V (G) is marked with a label that
denotes its class. The number of distinct labels is k with k ≤ dlog |V (T (G))|e.
The maximal cliques of G are at most n [18], where n is the order of the
initial chordal graph G. Hence, in respect with the theorems 1 and 3, we have
separated the vertices of G in at most O(log n) disjoint classes.

Procedure 1 NodePartitioning(T, l)
1: if T is a single node then
2: mark T with label l
3: else
4: find a 1/2-separator u in T
5: mark u with label l
6: remove u from T
7: l ← l + 1
8: for all subtrees Ts induced by the removal of u do
9: NodePartitioning(Ts, l)

10: end for
11: end if



Procedure 2 VertexPartitioning(G)
1: construct clique tree T from G
2: run NodePartitioning(T, 1)
3: for all nodes u ∈ V (T ) do
4: for all unmarked vertices v ∈ V (G) ∩ u do
5: mark v with the label of u
6: end for
7: end for

Figure 1a) depicts the chordal graph G, Figure 1b) depicts the induced
clique tree T (G) after the NodePartitioning procedure, while Figure 1c)
depicts G after the VertexPartitioning procedure. The numbers denote
the class of each node/vertex.
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Figure 1: Separation of vertices into classes: a) a chordal graph G, b) the
clique tree T (G), c) partitioning of G in two classes

Selection Once we have classified the vertices of G, we need an on-line
algorithm that chooses proper vertices to the Independent Set S. The on-line
algorithm RandMIS picks at random a label and accepts in a greedy way
(using GreedySelection) only vertices with this label. The input σ is the
sequence of the vertex arrivals, so σi is the i-th vertex of the sequence and its
label is denoted by lab(σi).

Procedure 3 GreedySelection(v)
1: if v is not adjacent with any u ∈ S then
2: S ← S ∪ {v}
3: end if



Algorithm 4 RandMIS(G, σ)
1: VertexPartitioning(G)
2: S ← ∅
3: pick a label l∗ uniformly at random from [1, . . . , k]
4: for each arriving vertice σi of G do
5: if lab(σi) = l∗ then
6: GreedySelection(σi)
7: end if
8: end for

Claim 1. If the input sequence is restricted to vertices of a single class, then
GreedySelection is 1-competitive.

Proof. Let suppose that the selected class is class with label l. Let u1, . . . , um

be the nodes of T (G) with label l. These nodes correspond to m cliques of
G, after the VertexPartitioning procedure, that have no any vertex in
common. The optimal offline algorithm can choose at most one vertex per
clique ui, because the maximum independent set of a clique is a singleton that
contains any vertex of the clique. GreedySelection accepts exactly one
vertex per clique.

Lemma 1. The RandMIS is O(log n)-competitive, where n is the order of
the chordal graph (for an oblivious adversary).

Proof. For any input sequence σ of vertices of G, let RandMIS (σ) and alg
(σ) be the number of vertices accepted by the on-line and the offline algorithm
respectively. Let cl and ol the number of vertices of class l accepted by the
on-line and the offline algorithm respectively. By claim 1, cl∗ = ol∗ . Therefore

E[RandMIS(σ)] =
log n∑

l=1

Pr[chooses level l] · cl

≥
log n∑

l=1

1
log n

· ol

=
1

log n

log n∑

l=1

ol

=
1

log n
opt(σ)



The following lemma, suggests that there is no on-line algorithm that
achieves better competitive ratio.

Lemma 2. b log(n+1)
2 c is a lower bound on the randomized (oblivious adver-

sary) competitive ratio for the on-line maximum independent set in chordal
graphs, where n is the order of the chordal graph.

Proof. We will use the Yao’s Principle in order to prove the lower bound. It
is sufficient to produce a distribution on sequences of vertices σ, such that

E[opt(σ)] >
log(n + 1)

2
while for every on-line algorithm alg, E[alg(σ)] ≤ 1.
For this purpose, we need firstly to construct a chordal graph G in the

following way. We produce a complete binary tree B with n vertices. Then
we recursively add edges in the following way: We add edges that join the
root with any other vertex and we repeat this procedure for the two subtrees
adjacent to the root and so on.

This chordal graph G, is in fact an interval graph, because its clique tree
is a trail (theorem 4). We denote the vertex set of depth i with Vi and call
them vertices of class i.

We consider G as the initial chordal graph of the problem. We also consider
as sets of arriving vertices Vi, 0 ≤ i ≤ log(n+1)− 1 where n is the order of G.

Note that every vertex in Vi is a vertex of class i and is adjacent to any
leaf of the tree. Every vertex in Vi is adjacent with two vertices in Vi+1, with
four vertices of Vi+2 and so on.

Now, we produce the probability distribution as follows: Choose l in the
set {1, 2, . . . , log n} with probability pl = 2−l

2−1/2d , where d = log(n + 1) − 1 is
the depth of the tree B.

Then, produce the arrivals of all the vertices in V1, V2, . . . , Vl and terminate
the sequence.

Initially, we consider opt in a random input σ. If this input terminates with
vertices of class i, then opt accepts exactly the vertices of class i, rejecting
every vertex of class j < i.
Consequently,



E[opt(σ)] =
d∑

i=0

2i · 2−i

2− 1/2d

>
log(n + 1)

2

For every deterministic on-line algorithm alg we claim the following:

Claim 2. If alg rejects a vertex v of Vi that is not adjacent to any already
accepted vertex, then E[the expected benefit of alg by rejecting v] ≤ 1 = the
benefit of alg if it accepts v.

Proof. Note that we have chosen a probability distribution such that Pr[alg
meets vertices of Vi| alg has met vertices of Vi−1 ]≤ 1

2 . We will prove Claim 2
with induction on i = d, d− 1, . . . , 0. For the special case i = d, if the on-line
algorithm rejects v, its expected benefit is 0, since there will not be other
arrivals of vertices adjacent to v. Let’s consider that the claim holds for the
class j. We will prove that it also holds for the class j − 1. If the algorithm
rejects a vertex v of the class j − 1, it hopes to the benefit of vertices of the
class j, that are adjacent to v. Hence the expected benefit of alg by rejecting
v, is at most 1

2(E[v1] + E[v2]), where v1 and v2 are the two adjacent vertices
to v and E[vi] is the maximum expected benefit of accepting or rejecting vi.
With probability 1

2 , alg will meet both v1 and v2 and will have the choice
to either accept them or to reject them. However, since v1 and v2 are class
j vertices, we know by the induction hypothesis that E[v1] = E[v2] ≤ 1, no
matter if alg accepts them or not.

Summarizing, alg may accept or reject the first vertex. If it accepts it
then alg(σ) = 1. If it rejects it, then by Claim 2, E[alg(σ)] ≤ 1.

From the above lemmas the following main result for the on-line MIS in
chordal graphs is induced.

Theorem 5. The on-line MIS in chordal graphs has competitive ratio O(log n)
(for oblivious adversary), where n is the order of the initial chordal graph.



5 Applications

The specific on-line model for maximum independent set is particularly useful
because it can be used to solve the on-line admission control. Instead of
solving the on-line admission control or the on-line maximum edje-disjoint
paths problem in a graph G, one may consider the intersection graph I(G)
which is induced by any possible request (path in G) and then solve the on-line
maximum independent set in I(G). In I(G) two vertices are adjacent if the
corresponding paths on G intersect.

We propose the following randomized algorithm for the on-line admission
control problem in a tree T of order n.

Algorithm 5 RandAC(T, σ)
1: G ← I(T )
2: RandMIS(G, σ)

Corollary 1. The RandAC is O(log n)-competitive, where n is the order of
the tree T (for an oblivious adversary).

Proof. The intersection graph G = I(T ) has
(
n
2

)
vertices, as we consider any

possible pair of vertices of T . Note that a pair of vertices of T denote a unique
path in T . Consequently the competitive ratio c of RandAC on T equals the
competitive ratio of RandMIS on G. Hence c = O(log

(
n
2

)
) = O(log n)

The algorithm RandMIS partitions the node set of the clique tree in k
classes. k becomes equal to log n in the case where the clique tree is a trail, oth-
erwise k < log n. As a matter of fact, we are not interested in 1/2-separators
of the tree, but for the minimum height elimination tree of the clique tree.
Hence the proposed here algorithm is O(log(rank(T )))-competitive, where T
is the clique tree and rank(T) the height of the minimum height elimination
tree of T . According to [25] the following holds.

Proposition 1. [25] If T is a tree on n vertices and of diameter D, then

1 + blog Dc ≤ rank(T ) ≤ 1 + blog nc

and these bounds are tight.

The application of the algorithm in interval graphs is obvious. The interval
graphs are intersection graphs in trails. Hence, we have the same result for
the on-line admission control in trails.



As known by theorem 1, the family of chordal graphs is the family of the
intersection graphs of subtrees in trees. This interesting property provides a
straightforward algorithm for a generalization of on-line admission control in
trees, where the calls are not just paths but subtrees. The problem is that
the intersection graph may have superpolynomial number of vertices on V (T ),
and in this case the competitive ratio is linear on V (T ).

In general the on-line MIS in chordal graphs is more general than the on-
line admission control in trees. One can produce the former by the latter but
not inversely. For example one can represent the tree as a chordal graph that
considers every possible path. However, a chordal graph does not correspond
to a network where every possible call is considered, but only a part of them.

6 Conclusion

In this paper we suggested an O(log n)-competitive algorithm for the on- line
maximum independent set problem in chordal and interval graphs. The spe-
cific on-line model can be applied to the on-line admission control in trees
and lines and achieve competitive ratio O(log n). The same idea may also
be applied in other intersection graph families (e.g. circular arc graphs) and
produce results for the on-line admission control (e.g in rings).
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